Objective and automatic assessment approach for diagnosing attention-deficit/hyperactivity disorder based on skeleton detection and classification analysis in outpatient videos

Author:

Ouyang Chen-Sen,Yang Rei-Cheng,Wu Rong-Ching,Chiang Ching-Tai,Chiu Yi-Hung,Lin Lung-Chang

Abstract

Abstract Background Attention-deficit/hyperactivity disorder (ADHD) is diagnosed in accordance with Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition criteria by using subjective observations and information provided by parents and teachers. However, subjective analysis often leads to overdiagnosis or underdiagnosis. There are two types of motor abnormalities in patients with ADHD. First, hyperactivity with fidgeting and restlessness is the major diagnostic criterium for ADHD. Second, developmental coordination disorder characterized by deficits in the acquisition and execution of coordinated motor skills is not the major criterium for ADHD. In this study, a machine learning-based approach was proposed to evaluate and classify 96 patients into ADHD (48 patients, 26 males and 22 females, with mean age: 7y6m) and non-ADHD (48 patients, 26 males and 22 females, with mean age: 7y8m) objectively and automatically by quantifying their movements and evaluating the restlessness scales. Methods This approach is mainly based on movement quantization through analysis of variance in patients’ skeletons detected in outpatient videos. The patients’ skeleton sequence in the video was detected using OpenPose and then characterized using 11 values of feature descriptors. A classification analysis based on six machine learning classifiers was performed to evaluate and compare the discriminating power of different feature combinations. Results The results revealed that compared with the non-ADHD group, the ADHD group had significantly larger means in all cases of single feature descriptors. The single feature descriptor “thigh angle”, with the values of 157.89 ± 32.81 and 15.37 ± 6.62 in ADHD and non-ADHD groups (p < 0.0001), achieved the best result (optimal cutoff, 42.39; accuracy, 91.03%; sensitivity, 90.25%; specificity, 91.86%; and AUC, 94.00%). Conclusions The proposed approach can be used to evaluate and classify patients into ADHD and non-ADHD objectively and automatically and can assist physicians in diagnosing ADHD.

Funder

National Science and Technology Council, Taiwan

Kaohsiung Medical University Hospital

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3