Abstract
Costa et. al (Frontiers in Physiology (2017) 8255) proved that abnormal features of heart rate variability (HRV) can be discerned by the presence of particular patterns in a signal of time intervals between subsequent heart contractions, called RR intervals. In the following, the statistics of these patterns, quantified using entropic tools, are explored in order to uncover the specifics of the dynamics of heart contraction based on RR intervals. The 33 measures of HRV (standard and new ones) were estimated from four hour nocturnal recordings obtained from 181 healthy people of different ages and analyzed with the machine learning methods. The validation of the methods was based on the results obtained from shuffled data. The exploratory factor analysis provided five factors driving the HRV. We hypothesize that these factors could be related to the commonly assumed physiological sources of HRV: (i) activity of the vagal nervous system; (ii) dynamical balance in the autonomic nervous system; (iii) sympathetic activity; (iv) homeostatic stability; and (v) humoral effects. In particular, the indices describing patterns: their total volume, as well as their distribution, showed important aspects of the organization of the ANS control: the presence or absence of a strong correlation between the patterns’ indices, which distinguished the original rhythms of people from their shuffled representatives. Supposing that the dynamic organization of RR intervals is age dependent, classification with the support vector machines was performed. The classification results proved to be strongly dependent on the parameters of the methods used, therefore determining that the age group was not obvious.
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献