Patterns of Heart Rate Dynamics in Healthy Aging Population: Insights from Machine Learning Methods

Author:

Makowiec DanutaORCID,Wdowczyk Joanna

Abstract

Costa et. al (Frontiers in Physiology (2017) 8255) proved that abnormal features of heart rate variability (HRV) can be discerned by the presence of particular patterns in a signal of time intervals between subsequent heart contractions, called RR intervals. In the following, the statistics of these patterns, quantified using entropic tools, are explored in order to uncover the specifics of the dynamics of heart contraction based on RR intervals. The 33 measures of HRV (standard and new ones) were estimated from four hour nocturnal recordings obtained from 181 healthy people of different ages and analyzed with the machine learning methods. The validation of the methods was based on the results obtained from shuffled data. The exploratory factor analysis provided five factors driving the HRV. We hypothesize that these factors could be related to the commonly assumed physiological sources of HRV: (i) activity of the vagal nervous system; (ii) dynamical balance in the autonomic nervous system; (iii) sympathetic activity; (iv) homeostatic stability; and (v) humoral effects. In particular, the indices describing patterns: their total volume, as well as their distribution, showed important aspects of the organization of the ANS control: the presence or absence of a strong correlation between the patterns’ indices, which distinguished the original rhythms of people from their shuffled representatives. Supposing that the dynamic organization of RR intervals is age dependent, classification with the support vector machines was performed. The classification results proved to be strongly dependent on the parameters of the methods used, therefore determining that the age group was not obvious.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3