Age Prediction in Healthy Subjects Using RR Intervals and Heart Rate Variability: A Pilot Study Based on Deep Learning

Author:

Lee Kyung Hyun1ORCID,Byun Sangwon1

Affiliation:

1. Department of Electronics Engineering, Incheon National University, Incheon 22012, Republic of Korea

Abstract

Autonomic cardiac regulation is affected by advancing age and can be observed by variations in R-peak to R-peak intervals (RRIs). Heart rate variability (HRV) has been investigated as a physiological marker for predicting age using machine learning. However, deep learning-based age prediction has rarely been performed using RRI data. In this study, age prediction was demonstrated in a healthy population based on RRIs using deep learning. The RRI data were extracted from 1093 healthy subjects and applied to a modified ResNet model to classify four age groups. The HRV features were evaluated using this RRI dataset to establish an HRV-based prediction model as a benchmark. In addition, an age prediction model was developed that combines RRI and HRV data. The adaptive synthetic algorithm was used because of class imbalance and a hybrid loss function that combined classification loss and mean squared error functions was implemented. Comparisons suggest that the RRI model can perform similarly to the HRV and combined models, demonstrating the potential of the RRI-based deep learning model for automated age prediction. However, these models showed limited efficacy in predicting all age groups, indicating the need for significant improvement before they can be considered reliable age prediction methods.

Funder

Incheon National University (International Cooperative) Research Grant

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3