Fuzzy Ontology-Based System for Driver Behavior Classification

Author:

Fernandez SuselORCID,Ito TakayukiORCID,Cruz-Piris LuisORCID,Marsa-Maestre IvanORCID

Abstract

Intelligent transportation systems encompass a series of technologies and applications that exchange information to improve road traffic and avoid accidents. According to statistics, some studies argue that human mistakes cause most road accidents worldwide. For this reason, it is essential to model driver behavior to improve road safety. This paper presents a Fuzzy Rule-Based System for driver classification into different profiles considering their behavior. The system’s knowledge base includes an ontology and a set of driving rules. The ontology models the main entities related to driver behavior and their relationships with the traffic environment. The driving rules help the inference system to make decisions in different situations according to traffic regulations. The classification system has been integrated on an intelligent transportation architecture. Considering the user’s driving style, the driving assistance system sends them recommendations, such as adjusting speed or choosing alternative routes, allowing them to prevent or mitigate negative transportation events, such as road crashes or traffic jams. We carry out a set of experiments in order to test the expressiveness of the ontology along with the effectiveness of the overall classification system in different simulated traffic situations. The results of the experiments show that the ontology is expressive enough to model the knowledge of the proposed traffic scenarios, with an F1 score of 0.9. In addition, the system allows proper classification of the drivers’ behavior, with an F1 score of 0.84, outperforming Random Forest and Naive Bayes classifiers. In the simulation experiments, we observe that most of the drivers who are recommended an alternative route experience an average time gain of 66.4%, showing the utility of the proposal.

Funder

University of Alcalá

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3