Mamdani vs. Takagi–Sugeno Fuzzy Inference Systems in the Calibration of Continuous-Time Car-Following Models

Author:

Pop Mădălin-Dorin1ORCID,Pescaru Dan1ORCID,Micea Mihai V.1ORCID

Affiliation:

1. Computer and Information Technology Department, Politehnica University of Timisoara, 300223 Timisoara, Romania

Abstract

The transition to intelligent transportation systems (ITSs) is necessary to improve traffic flow in urban areas and reduce traffic congestion. Traffic modeling simplifies the understanding of the traffic paradigm and helps researchers to estimate traffic behavior and identify appropriate solutions for traffic control. One of the most used traffic models is the car-following model, which aims to control the movement of a vehicle based on the behavior of the vehicle ahead while ensuring collision avoidance. Differences between the simulated and observed model are present because the modeling process is affected by uncertainties. Furthermore, the measurement of traffic parameters also introduces uncertainties through measurement errors. To ensure that a simulation model fully replicates the observed model, it is necessary to have a calibration process that applies the appropriate compensation values to the simulation model parameters to reduce the differences compared to the observed model parameters. Fuzzy inference techniques proved their ability to solve uncertainties in continuous-time models. This article aims to provide a comparative analysis of the application of Mamdani and Takagi–Sugeno fuzzy inference systems (FISs) in the calibration of a continuous-time car-following model by proposing a methodology that allows for parallel data processing and the determination of the simulated model output resulting from the application of both fuzzy techniques. Evaluation of their impact on the follower vehicle considers the running distance and the dynamic safety distance based on the observed behavior of the leader vehicle. In this way, the identification of the appropriate compensation values to be applied to the input of the simulated model has a great impact on the development of autonomous driving solutions, where the real-time processing of sensor data has a crucial impact on establishing the car-following strategy while ensuring collision avoidance. This research performs a simulation experiment in Simulink (MATLAB R2023a, Natick, MA, USA: The MathWorks Inc.) and considers traffic data collected by inductive loops as parameters of the observed model. To emphasize the role of Mamdani and Takagi–Sugeno FISs, a noise injection is applied to the model parameters with the help of a band-limited white-noise Simulink block to simulate sensor measurement errors and errors introduced by the simulation process. A discussion based on performance evaluation follows the simulation experiment, and even though both techniques can be successfully applied in the calibration of the car-following models, the Takagi–Sugeno FIS provides more accurate compensation values, which leads to a closer behavior to the observed model.

Funder

European Social Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing green ports in Dar es Salaam Port: facility optimization for emission reduction through Mamdani and Sugeno Fuzzy inference systems;Frontiers in Environmental Engineering;2024-09-11

2. The implementation of a collision warning system in Formula racing;Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology;2024-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3