Designing Tangible as an Orchestration Tool for Collaborative Activities

Author:

Li YanhongORCID,Kothiyal Aditi,Weber ThomasORCID,Rossmy Beat,Mayer SvenORCID,Hussmann HeinrichORCID

Abstract

Orchestrating collaborative learning activities is a challenge, even with the support of technology. Tangibles as orchestration tools represent an ambient and embodied approach to sharing information about the learning content and flow of the activity, thus facilitating both collaboration and its orchestration. Therefore, we propose tangibles as a solution to orchestrate productive collaborative learning. Concretely, this paper makes three contributions toward this end: First, we analyze the design space for tangibles as an orchestration tool to support collaborative learning and identify twelve essential dimensions. Second, we present five tangible tools for collaborative learning activities in face-to-face and online classrooms. Third, we present principles and challenges to designing tangibles for orchestrating collaborative learning based on our findings from the evaluation of ten educational experts who evaluated these tools using a usability scale and open questions. The key findings were: (1) they had good usability; (2) their main advantages are ease of use and support for collaborative learning; (3) their main disadvantages are limited functions and the difficulty to scale them to more users. We conclude by providing reflections and recommendations for the future design of tangibles for orchestration.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Computer Science Applications,Human-Computer Interaction,Neuroscience (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Embedding Thinking Strategies within a Tangible Tree to Orchestrate Small Group Brainstorming;Proceedings of the Eighteenth International Conference on Tangible, Embedded, and Embodied Interaction;2024-02-11

2. Multimodal Communication and Peer Interaction during Equation-Solving Sessions with and without Tangible Technologies;Multimodal Technologies and Interaction;2023-01-11

3. Local Communities and Their Visitors: An Interaction Design Approach;Design, User Experience, and Usability;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3