The Source Structure Design of the Rotating Magnetic Beacon Based on Phase-Shift Direction Finding System

Author:

Li Bo,Yang Binfeng,Xiang Fenghua,Guo Jiaojiao,Li Hailin

Abstract

Target azimuth information can help further improve the accuracy of magnetic orientation, but the current periodic magnetic field generated by the magnetic beacon is multivalued, so it is not suitable for azimuth measurement. According to the distribution of a rotating magnetic field and the phase angle measuring principle, we put forward a new magnetic source structure design of a multiple rotating permanent magnet array by adjusting the spacing d, the rotating speed ω and the initial rotation angle φ, and then verified the mathematical model using COMSOL simulation software. A triple structure was obtained by comparison (d3=3d1=3d2=43 m, d3=3d1=3d2=43 m, φ1=0, φ2=4π5 rad. φ3=π rad), which can produce a strong characteristic magnetic signal similar to a heart-shaped field pattern. Finally, a signal transceiver system was set up for the experiment. The experimental result shows that the waveform of the magnetic signal generated by the real beacon meets the requirement of having a unique maximum value and good directivity within a period, which proves the practical application effect of the structure.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference29 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Vocal Music Teaching Assistant System Based on Android Technology;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

2. Design and Implementation of Key Modules of English Teaching System Based on J2EE;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

3. Application of a Novel Aptamer Beacon for Rapid Detection of IgG1 Antibody Drugs;Applied Biochemistry and Biotechnology;2023-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3