Detection Method for Walnut Shell-Kernel Separation Accuracy Based on Near-Infrared Spectroscopy

Author:

An MinhuiORCID,Cao Chengmao,Wu Zhengmin,Luo Kun

Abstract

In this study, Near-infrared (NIR) spectroscopy was adopted for the collection of 1200 spectra of three types of walnut materials after breaking the shells. A detection model of the walnut shell-kernel separation accuracy was established. The preprocessing method of de-trending (DT) was adopted. A classification model based on a support vector machine (SVM) and an extreme learning machine (ELM) was established with the principal component factor as the input variable. The effect of the penalty value (C) and kernel width (g) on the SVM model was discussed. The selection criteria of the number of hidden layer nodes (L) in the ELM model were studied, and a genetic algorithm (GA) was used to optimize the input layer weight (W) and the hidden layer threshold value (B) of the ELM. The results revealed that the classification accuracy of SVM and ELM models for the shell, kernel, and chimera was 97.78% and 97.11%. The proposed method can serve as a reference for the detection of walnut shell-kernel separation accuracy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference22 articles.

1. Design and Test on Hammerhead of Pecan Shell-breaking Machine;Cao;Trans. Chin. Soc. Agric. Mach.,2017

2. Walnut Fruit Processing Equipment: Academic Insights and Perspectives

3. Research Progress on the Separation Technology of Walnut Shell-kernel;Zhu;Food Ind.,2014

4. Experimental Research on Shell and Kernel of Almonds;Turuhong;J. Agric. Mech. Res.,2018

5. Experiment on Winnowing Mechanism and Winnowing Performance of Hickory Material;Cao;Trans. Chin. Soc. Agric. Mach.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3