3D Radiation Pattern Reconfigurable Phased Array for Transmission Angle Sensing in 5G Mobile Communication

Author:

Zhang Jin,Zhang ShuaiORCID,Lin Xianqi,Fan Yong,Pedersen Gert

Abstract

This paper proposes a 3D radiation pattern reconfigurable antenna (RPRA) and a reconfigurable phased array (RPA) for 5G mobile communication. The antenna and array are working at 28 GHz, which is selected as a 5G communication band in many countries. The proposed phased array will be applied as sensors to find out the optimal transmitting–receiving angle in a randomly changed cellular wireless scenarios. The RPRA and RPA are fed by Substrate Integrated Waveguide (SIW) and have three switchable radiation modes: Broadside 1, Broadside 2 and Endfire. The three modes correspond to three different radiation patterns and each of them covers a different area in the Azimuth plane. An eight-element phased array constructed by the proposed RPRA, which is able to switch beam in Azimuth plane and scan in the Elevation plane, is also presented in this paper. The proposed RPA is able to provide much higher spatial coverage than the conventional phased arrays and without additional feeding and phase shifting networks. The beam switching is realized by the PIN diodes. The proposed antenna and array have planer structures and require small clearance on the ground plane which makes them compatible with mobile phones. The simulations show good performance for both RPRA and RPA.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Simulation of Antenna Arrays Using Domain Decomposition Principles;2024 IEEE 25th International Conference of Young Professionals in Electron Devices and Materials (EDM);2024-06-28

2. Revolutionizing Wireless Communication;Advances in Wireless Technologies and Telecommunication;2024-04-12

3. Millimeter-Wave Beam-Scanning Phased Array With Switchable Broadside and Endfire Radiation Pattern Using Phase-Controlled Elements;IEEE Transactions on Antennas and Propagation;2024-03

4. Performance analysis of 6G terahertz antenna design using micro strip patch feed;AIP Conference Proceedings;2024

5. A Novel Unit Classification Method for Fast and Accurate Calculation of Radiation Patterns;Electronics;2023-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3