VHRShips: An Extensive Benchmark Dataset for Scalable Deep Learning-Based Ship Detection Applications

Author:

Kızılkaya Serdar,Alganci UgurORCID,Sertel ElifORCID

Abstract

The classification of maritime boats and ship targets using optical satellite imagery is a challenging subject. This research introduces a unique and rich ship dataset named Very High-Resolution Ships (VHRShips) from Google Earth images, which includes diverse ship types, different ship sizes, several inshore locations, and different data acquisition conditions to improve the scalability of ship detection and mapping applications. In addition, we proposed a deep learning-based multi-stage approach for ship type classification from very high resolution satellite images to evaluate the performance of the VHRShips dataset. Our “Hierarchical Design (HieD)” approach is an end-to-end structure that allows the optimization of the Detection, Localization, Recognition, and Identification (DLRI) stages, independently. We focused on sixteen parent ship classes for the DLR stages, and specifically considered eight child classes of the navy parent class at the identification stage. We used the Xception network in the DRI stages and implemented YOLOv4 for the localization stage. Individual optimization of each stage resulted in F1 scores of 99.17%, 94.20%, 84.08%, and 82.13% for detection, recognition, localization, and identification, respectively. The end-to-end implementation of our proposed approach resulted in F1 scores of 99.17%, 93.43%, 74.00%, and 57.05% for the same order. In comparison, end-to-end YOLOv4 yielded F1-scores of 99.17%, 86.59%, 68.87%, and 56.28% for DLRI, respectively. We achieved higher performance with HieD than YOLOv4 for localization, recognition, and identification stages, indicating the usability of the VHRShips dataset in different detection and classification models. In addition, the proposed method and dataset can be used as a benchmark for further studies to apply deep learning on large-scale geodata to boost GeoAI applications in the maritime domain.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3