Exploring Self-Supervised Learning for Multi-Modal Remote Sensing Pre-Training via Asymmetric Attention Fusion

Author:

Xu Guozheng1ORCID,Jiang Xue1ORCID,Li Xiangtai2ORCID,Zhang Ze1,Liu Xingzhao1ORCID

Affiliation:

1. The School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. The S-Lab, Nanyang Technological University, Singapore 639798, Singapore

Abstract

Self-supervised learning (SSL) has significantly bridged the gap between supervised and unsupervised learning in computer vision tasks and shown impressive success in the field of remote sensing (RS). However, these methods have primarily focused on single-modal RS data, which may have limitations in capturing the diversity of information in complex scenes. In this paper, we propose the Asymmetric Attention Fusion (AAF) framework to explore the potential of multi-modal representation learning compared to two simpler fusion methods: early fusion and late fusion. Given that data from active sensors (e.g., digital surface models and light detection and ranging) is often noisier and less informative than optical images, the AAF is designed with an asymmetric attention mechanism within a two-stream encoder, applied at each encoder stage. Additionally, we introduce a Transfer Gate module to select more informative features from the fused representations, enhancing performance in downstream tasks. Our comparative analyses on the ISPRS Potsdam datasets, focusing on scene classification and segmentation tasks, demonstrate significant performance enhancements with AAF compared to baseline methods. The proposed approach achieves an improvement of over 7% in all metrics compared to randomly initialized methods for both tasks. Furthermore, when compared to early fusion and late fusion methods, AAF consistently outperforms in achieving superior improvements. These results underscore the effectiveness of AAF in leveraging the strengths of multi-modal RS data for SSL, opening doors for more sophisticated and nuanced RS analysis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3