Tackling Climate Change with Machine Learning

Author:

Rolnick David1ORCID,Donti Priya L.2,Kaack Lynn H.3,Kochanski Kelly4,Lacoste Alexandre5,Sankaran Kris6,Ross Andrew Slavin7,Milojevic-Dupont Nikola8,Jaques Natasha9,Waldman-Brown Anna10,Luccioni Alexandra Sasha11,Maharaj Tegan12,Sherwin Evan D.13,Mukkavilli S. Karthik14,Kording Konrad P.15,Gomes Carla P.16,Ng Andrew Y.13,Hassabis Demis17,Platt John C.18,Creutzig Felix8,Chayes Jennifer19,Bengio Yoshua11

Affiliation:

1. McGill University and Mila - Quebec AI Institute

2. Carnegie Mellon University

3. Hertie School and ETH Zürich

4. University of Colorado Boulder

5. Element AI/Service Now

6. University of Wisconsin - Madison and Université de Montréal

7. New York University and Harvard University

8. Mercator Research Institute on Global Commonsand Climate Change and Technische Universität Berlin

9. Google Brain and UC Berkeley

10. Massachusetts Institute of Technology

11. Mila - Quebec AI Institute and Université de Montréal

12. Mila - Quebec AI Institute and Polytechnique Montréal

13. Stanford University

14. University of California and Lawrence Berkeley National Lab

15. University of Pennsylvania

16. Cornell University

17. DeepMind

18. Google AI

19. University of California, Berkeley

Abstract

Climate change is one of the greatest challenges facing humanity, and we, as machine learning (ML) experts, may wonder how we can help. Here we describe how ML can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by ML, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the ML community to join the global effort against climate change.

Funder

National Science Foundation

Center for Climate and Energy Decision Making through a cooperative agreement between the National Science Foundation and Carnegie Mellon University

US Department of Energy

Natural Sciences and Engineering Research Council of Canada

MIT Media Lab Consortium

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3