Simultaneous Compatible System of Models of Height, Crown Length, and Height to Crown Base for Natural Secondary Forests of Northeast China

Author:

Zhou Zeyu,Fu Liyong,Zhou ChaofanORCID,Sharma Ram P.ORCID,Zhang HuiruORCID

Abstract

Individual trees are characterized by various sizes and forms, such as diameter at breast height, total height (H), height to crown base (HCB), crown length (CL), crown width, and crown and stem forms. Tree characteristics are strongly related to each other, and studying their relationships is very important. The knowledge of the compatibility and additivity properties of the major tree characteristics, such as H, CL, and HCB, is essential for informed decision-making in forestry. H can be used to represent site quality and CL represents biomass and photosynthesis of crown, which is the performance of individual tree vigor and light interception, and the longer the crown length (or shorter HCB) is, the more vigorous the tree would be. However, none of the studies have uncovered their inherent relationships quantitatively. This study attempts to explore such relationships through the application of appropriate modeling approaches. We applied seemingly unrelated regression, such as nonlinear seemingly unrelated regression (NSUR), which is commonly used for exploring the compatibility and additivity properties of the variables, for the proposes. The NSUR involves the variance and covariance matrices of the sub-models that are used for the interpretation of the correlations among the variables of interest. The data set acquired from Mongolian oak forest and spruce-fir forest in the Jingouling forest farm of the Wangqing Forest Bureau in the Northeast of China were used to construct two types of model systems: a compatible model system (the model system of H, CL, and HCB can be estimated simultaneously) and an additive model system (the sum of HCB and CL is H, the form of the H sub-model equals the sum of the HCB and CL sub-models) from the individual models of H, CL, and HCB. Among the various tree-level and stand-level variables evaluated, D (diameter at breast), Dg (quadratic mean diameter), DT (dominant diameter), CW (crown width), SDI (stand density index), and BAS (basal area of stand) contributed significantly highly to the variations of the response of the variables of interest in the model systems. Modeling results showed the existence of the compatibility and additivity of H, CL, and HCB simultaneously. The additive model system exhibited better fitting performance on H and HCB but poorer fitting on CL compared with the simultaneous model system, indicating that the performance of the additive model system could be higher than that of the simultaneous model system. Model tests against the validation data set also confirmed such results. This study contributes a novel approach to solving the compatibility and additivity of the problems of H, CL, and HCB models through the application of the robust estimating method, NSUR. The results and algorithm presented will be useful for constructing similar compatible and additive model systems of multiple tree-level models for other tree species.

Funder

Thirteenth Five-year Plan Pioneering Project of High Technology Plan of the National Department of Technology

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3