Visual Simulation Research on Growth Polymorphism of Chinese Fir Stand Based on Different Comprehensive Grade Models of Spatial Structure Parameters

Author:

Hu Xingtao1234,Zhang Huaiqing134ORCID,Yang Guangbin2,Qiu Hanqing134ORCID,Lei Kexin134,Yang Tingdong134,Liu Yang134ORCID,Zuo Yuanqing134,Wang Jiansen134,Cui Zeyu134

Affiliation:

1. Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China

2. School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550025, China

3. Key Laboratory of Forest Management and Growth Modelling, NFGA, Beijing 100091, China

4. National Long Term Scientific Research Base of Huangfengqiao Forest Monitoring and Simulation in Hunan Province, Beijing 100091, China

Abstract

Since tree morphological structure is strongly influenced by internal genetic and external environmental factors, accurate simulation of individual morphological–structural changes in trees is the premise of forest management and 3D simulation. However, existing studies have few descriptions, and the research on the impact of growth environments and stand spatial structures on tree morphological structure and growth is still limited. In our study, we constructed a comprehensive grade model of spatial structure (CGMSS) to comprehensively evaluate individual tree growth states of the stands and grade them from 0 to 10 correspondingly. In addition, we developed a Chinese fir morphological structure growth model based on CGMSS, and dynamically simulate the growth variations of Chinese fir stands. The results showed that the overall stand prediction accuracy of CGMSS-based Chinese fir diameter at breast height, tree height, crown width and under-living branch height growth models was more than 94%. According to the analysis of the comprehensive grade of spatial structure (CGSS) of trees in the stand, except for the prediction accuracy and systematic error of the under-living branch height growth model at the CGSS = 3–5 levels, the systematic error of the Chinese fir growth model at each level was lower than 21.2%, and the prediction accuracy was greater than 73%. Compared with the spatial structural unit (SSU)-based Chinese fir growth model proposed by Ma et al., all growth models fit better at all levels, except for the CGMSS-based Chinese fir tree height and under-living branch height growth models that fit significantly lower than the SSU-based Chinese fir growth model at CGSS = 3–5 levels. In this study, the main conclusion is that the simulation results of CGMSS’s Chinese fir morphological structure growth model are closer to the real growth state of trees, achieving accurate simulation of differential growth of trees in different growth dominance degrees and spatial structure states in forest stands, making visualized forest management more effective and realistic.

Funder

National Natural Science Foundation of China

Foundation Research Funds of IFRIT

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3