Development of Artificial Geochemical Filter to Treat Acid Mine Drainage for Safe Disposal of Mine Water in Salt Range Portion of Indus Basin—A Lab to Pilot Scale Study

Author:

Jabbar Khan AbdulORCID,Akhter GulraizORCID,Ge YonggangORCID,Shahid MuhammadORCID,Rahman Khalil UrORCID

Abstract

Several passive and active treatment approaches are available for dealing with Acid Mine Drainage (AMD). Despite a range of newly emergent techniques for the treatment of AMD, pH control using low-cost neutralizing reagents has been the most common and economical technique for the treatment of AMD. Thereby, owing to their widespread availability, ease of use, and cost effectiveness, active treatment techniques utilizing calcium-based reagents (particularly limestone) are considered the prime choice for treating AMD. Limestone is a well-known option worldwide for AMD neutralization thanks to its easy availability, low cost, and excellent efficiency. Generally, acidity is reduced by the presence of CaCO3 and alkalinity (i.e., HCO−3) is increased. pH can be increased from 2.5 to 7.5 by using limestone as a treating agent, resulting in the precipitation of heavy metals, which can then be removed by precipitation and sorption. Wargal limestone, a well-known limestone from the Salt Range, Indus basin, Pakistan, has high potential for neutralization and treatment of PTEs present in mine water or AMD. After selecting a suitable neutralization material at pilot scale, two different filters were designed using selected Wargal limestone: Filter 1 A (Oxic-based, Vertical bed-type Wargal Limestone Filter) and Filter 1 B (Anoxic-based Vertical bed-type Wargal Limestone Filter with Compost). The pH of the AMD under study was elevated from 2.5 to 7.65 and 7.60, respectively, in uncoated and coated media of limestone. Although the neutralization potential decreased over time, as an overall phenomenon the Ca concentration and net alkalinity (280–360 mg/L) were increased with the removal of metals such as Fe, Cu, Pb and Mn. The respective removal efficiency of these metals was 98%, 99%, 99% and 60%, with a threshold residence time of 5 h. in all columns of the developed filters.

Funder

Chinese Academy of Sciences President’s International Fellowship Initiative

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference76 articles.

1. Passive Treatment of Acid Mine Drainage in Bioreactors using Sulfate-Reducing Bacteria

2. Hydrogeochemistry and microbiology of mine drainage: An update

3. Mine water hydrology;Younger,2002

4. Long-term Performance of Passive Acid Mine Drainage Treatment Systems

5. Engineering Guidelines for the Passive Remediation of Acidic and/or Metalliferous Mine Drainage and Similar Wastewaters,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3