Alkaline Chemical Neutralization to Treat Acid Mine Drainage with High Concentrations of Iron and Manganese

Author:

Zhao Pingping12,Zhang Ruiming12,Hu Mengdi12

Affiliation:

1. Fujian Province Colleges and University Engineering Research Center of Solid Waste Resource Utilization, Longyan 364012, China

2. College of Chemistry and Materials, Longyan University, Longyan 364012, China

Abstract

Due to its high acidity and toxic metal content, acid mine drainage (AMD) needs to be properly treated before being discharged into the environment. This study took the AMD collected from one specific mine in China as a sample and investigated the treatment methodology for AMD. The water quality of the AMD was measured, and the sample was treated with caustic soda (NaOH) and shell powder (one kind of conventional neutralizer, mainly composed of CaCO3) by the neutralization method. The results show that the AMD has a relatively low pH (2.16) and contains high concentrations of Fe (77.54 g/L), Mn (621.29 mg/L), Cu (6.54 mg/L), Ca (12.39 mg/L), and Mg (55.04 mg/L). NaOH was an effective neutralizer to treat the AMD and performed much better than shell powder. Various metals were precipitated, in the order of Fe(III), Cu, Fe(II), Mn, Ca, and Mg. The metal removal mechanisms included precipitation, adsorption, and co-precipitation. The optimal reaction conditions were the reaction duration was selected as 5 min and the mass ratio of NaOH to AMD was 0.16:1 (w:v). By this stage, the pH rapidly increased from 2.16 to 8.53 during AMD-NaOH interactions and various metals were efficiently removed (from 86.71% to 99.99%) by NaOH. The residual mass concentrations of Fe, Mn, Cu, Ca, and Mg after the treatment were 1.52, 1.77, 0.10, 1.65, and 2.17 mg/L, respectively. These data revealed that NaOH was a good treatment regent for this kind of AMD, based on the discharge criteria of China (GB28661 2012). Also, the shell powder was a helpful neutralizer for pH adjustment and copper removal. This neutralization method has the advantages of convenient operation, high speed, good effect, simple equipment, and low infrastructure cost. In addition, the resulting neutralized residue is a valuable and high-quality raw material, which can be used in metal smelting and separation.

Funder

Natural Science Foundation of Fujian Province

Qimai Natural Science Foundation of Longyan City, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3