Learning Performance Prediction-Based Personalized Feedback in Online Learning via Machine Learning

Author:

Wang Xizhe,Zhang Linjie,He Tao

Abstract

Online learning has become a vital option for ensuring daily instruction in response to the emergence of the COVID-19 epidemic. However, different from conventional massive online learning, inadequate available data bring challenges for instructors to identify underachieving students in school-based online learning, which may obstruct timely guidance and impede learning performance. Exploring small-sample-supported learning performance prediction and personalized feedback methods is an urgent need to mitigate these shortcomings. Consequently, considering the problem of insufficient data, this study proposes a machine learning model for learning performance prediction with additional pre-training and fine-tuning phases, and constructs a personalized feedback generation method to improve the online learning effect. With a quasi-experiment involving 62 participants (33 in experimental group and 29 in control group), the validity of the prediction model and personalized feedback generation, and the impact of the personalized feedback on learning performance and cognitive load, were evaluated. The results revealed that the proposed model reached a relatively high level of accuracy compared to the baseline models. Additionally, the students who learned with personalized feedback performed significantly better in terms of learning performance and showed a lower cognitive load.

Funder

National Nature Science Foundation of China

Zhejiang Provincial Philosophy and Social Sciences Planning Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3