Optimal Operation Model of Drainage Works for Minimizing Waterlogging Loss in Paddy Fields

Author:

Liu Zhenyang,Xiong YujiangORCID,Xu JuzengORCID,Yang ShihongORCID,Jiang ZeweiORCID,Liu Fangping

Abstract

The risk of flood or waterlogging in irrigation districts has increased due to global climate change and intensive human activities. A Model of Optimal Operation of Drainage Works (MOODW) for flat irrigation district was established by incorporating the hydrological model of waterlogging process and waterlogging loss estimation, which was solved by an optimization method of genetic algorithm. The model of waterlogging process was built based on a modified Tank model and hydrodynamic model for the ditch-river system. The waterlogging loss is calculated under the condition of inconstant inundated depth by linear interpolation. The adaptive genetic algorithm with the global optimization function was selected to solve the model. With an extreme rainfall events in Gaoyou irrigation district as cases, results showed that operation time and numbers of pumps increased; thus, operating costs were 1.4 times higher than before, but the yield loss of rice decreased by 35.4% observably. Finally, the total waterlogging loss was reduced by 33.8% compared with the traditional operation of waterlogging work. The most significant improvement was found in units with high waterlogging vulnerability. The MOODW can provide the waterlogging information visually and assist the district manager in making a reasonable decision.

Funder

National Natural Science Foundation of China

Central Public-Interest Scientific Institution Basal Research Fund for Changjiang River Scientific Research Institute

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3