Performances of Sheet-Pipe Typed Subsurface Drainage on Land and Water Productivity of Paddy Fields in Indonesia

Author:

Arif ChusnulORCID,Setiawan Budi Indra,Saptomo Satyanto KridoORCID,Matsuda Hiroshi,Tamura Koremasa,Inoue Youichi,Hikmah Zaqiah Mambaul,Nugroho Nurkholish,Agustiani Nurwulan,Suwarno Willy Bayuardi

Abstract

Subsurface drainage technology may offer a useful option in improving crop productivity by preventing water-logging in poor drainage paddy fields. The present study compared two paddy fields with and without sheet-pipe type subsurface drainage on land and water productivities in Indonesia. Sheet-pipe typed is perforated plastic sheets with a hole diameter of 2 mm and made from high-density polyethylene. It is commonly installed 30–50 cm below the soil surface and placed horizontally by a machine called a mole drainer, and then the sheets will automatically be a capillary pipe. Two fields were prepared, i.e., the sheet-pipe typed field (SP field) and the non-sheet-pipe typed field (NSP field) with three rice varieties (Situ Bagendit, Inpari 6 Jete, and Inpari 43 Agritan). In both fields, weather parameters and water depth were measured by the automatic weather stations, soil moisture sensors and water level sensors. During one season, the SP field drained approximately 45% more water compared to the NSP field. Thus, it caused increasing in soil aeration and producing a more significant grain yield, particularly for Inpari 43 Agritan. The SP field produced a 5.77 ton/ha grain yield, while the NSP field was 5.09 ton/ha. By producing more grain yield, the SP field was more effective in water use as represented by higher water productivity by 20%. The results indicated that the sheet-pipe type system developed better soil aeration that provides better soil conditions for rice.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3