A Model of Evapotranspirative Irrigation to Manage the Various Water Levels in the System of Rice Intensification (SRI) and Its Effect on Crop and Water Productivities

Author:

Arif ChusnulORCID,Saptomo Satyanto KridoORCID,Setiawan Budi Indra,Taufik MuhORCID,Suwarno Willy BayuardiORCID,Mizoguchi Masaru

Abstract

Evapotranspirative irrigation is a simple idea in a watering field based on the actual evapotranspiration rate, by operating an automatic floating valve in the inlet without electric power to manage water levels. The current study introduces a model of evapotranspirative irrigation and its application under different water levels. The objectives were (1) to evaluate the performances of evapotranspirative irrigation under various irrigation regimes, and to (2) to observe crop and water productivities of the system of rice intensification (SRI) as affected by different types of irrigation. The experiment was performed during one rice planting season, starting from July to November 2020, with three irrigation regimes, i.e., continuous flooded (CFI), moderate flooded (MFI) and water-saving irrigation (WSI). Good performance of the system was achieved; low root mean square error (RMSE) was indicated between observed water level and the set point in all irrigation regimes. Developing a better drainage system can improve the system. Among the regimes, the WSI regime was most effective in water use. It was able to increase water productivity by up to 14.5% while maintaining the crop yield. In addition, it has the highest water-use efficiency index. The index was 34% and 52% higher than those of the MFI and CFI regimes, respectively. Accordingly, the evapotranspirative irrigation was effective in controlling various water levels, and we recommend the system implemented at the field levels.

Funder

Ministry of Research and Technology/National Research and Innovation Agency, Indonesia

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3