Performance Assessment for Primary Frequency Regulation of Variable-Speed Pumped Storage Plant in Isolated Power Systems

Author:

Li Sha12,Cao Zezhou12,Hu Kuangqing12,Chen Diyi12

Affiliation:

1. Institute of Water Resources and Hydropower Research, Northwest A&F University, Xianyang 712100, China

2. Key Laboratory of Agriculture Soil and Water Engineering in Arid and Semiarid Areas, North A&F University, Ministry of Education, Xianyang 712100, China

Abstract

Primary frequency regulation (PFR) is a crucial operating condition for PSPs to realise frequency modulation, and the effectiveness of PFR is significant to the stability of power system frequency. Several challenges and risks have been presented in the PFR process for conventional PSPs, especially for those which run in the isolated grid, such as water inertia, negative damping of speed governor and ultra-low frequency oscillation (ULFO). Variable-speed pumped storage plants (VSPSPs) have the potential to overcome the negative impacts on regulation performance caused by hydraulic factors, due to the advantages of rapid power regulation and independent active power control from turbine output. In this paper, the primary task is to conduct a comprehensive assessment for PFR performance of VSPSPs in isolated power systems. Initially, the hydraulic–mechanical–electrical numerical models are established. Secondly, the rotational speed stability of the pump-turbine is quantified and the advantages of VSUs in suppressing ULFO are assessed. Relevant results reveal that the performance of VSUs is better than that of FSUs in the regulation process. Finally, assessments of frequency regulation performance under various scenarios are conducted with four indicators (standard deviation of power differences, power regulation time delay, settling time and overshoot).

Funder

Fundamental Research Funds for Northwest A&F University

the scientific research foundation of the Natural Science Foundation of Shaanxi Province of China

the Shaanxi Science and Technology Innovation Team and the Water Conservancy Science and Technology Program of Shaanxi Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3