Power System Analysis during Fast Desynchronization from Synchronous Area and Operation in Islanded Mode

Author:

Deltuva Ramūnas1ORCID,Lukočius Robertas1ORCID,Balsevičius Renatas1,Kriuglaitė-Jarašiūnienė Miglė1

Affiliation:

1. Department of Electrical Power Systems, Faculty of Electrical and Electronics Engineering, Kaunas University of Technology, LT-51367 Kaunas, Lithuania

Abstract

In a constantly and rapidly changing global environment, one of the main priority tasks for every country is preserving, maintaining, and operating an independent and individually robust and stable energy system. This paper aims at researching electrical power systems’ (EPSs) behavior during desynchronization from a synchronous area, its stability in islanded mode, and its synchronization. The analysis of EPS behavior was accomplished utilizing numerical simulations in a widely used programming/simulation package. The sudden tripping of the EPS into an isolated island mode with known generation and load values was simulated, analyzed, and discussed. We investigated the behavior of an isolated EPS in the case of the loss of a certain amount of active power, and determined the maximum power that must be available to ensure the reliable operation of the isolated EPS and the power reserve that must be maintained to prevent the EPS from triggering UFLS. The simulation of the synchronization of an isolated EPS with a synchronous area was accomplished and analyzed. The obtained results were applied to reveal the sequence of actions that will help an EPS to ensure and maintain the stable and reliable operation of electrical installations during desynchronization.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3