Pre-Treatment of Separately Collected Biowaste as a Way to Increase Methane Production and Digestate Stability

Author:

Bernat Katarzyna1ORCID,Le Thi Cam Tu1,Zaborowska Magdalena1ORCID,Kulikowska Dorota1

Affiliation:

1. Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-709 Olsztyn, Poland

Abstract

To produce a valuable final product from anaerobic digestion (AD), one of the preferred methods of organic recycling, high quality feedstock must be ensured. In this study, separately collected real biowaste (B) was used, consisting of 90% food waste and 10% green waste. The priority issues of AD are both high methane production (MP) and high organics removal efficiency (as organic matter, OM and dissolved organics, and DCOD), which may be improved after pre-treatment. In this study, the effect of hydrothermal pre-treatment (BHT) and enzymatic additives (BE) on MP and organics removal from biowaste in mesophilic (37 °C) conditions was analyzed. To assess the adequacy of pre-treatment application, biowaste without treatment (BWT) was used. Pre-treatment of biowaste prior to AD affected the maximal MP, the removal effectiveness of both OM and DCOD, and the kinetic parameters of these processes. For BWT, the maximal cumulative MP reached 239.40 ± 1.27 NL/kg OM; the kinetic coefficient of MP (kCH4) and the initial MP rate (rCH4) were 0.32 ± 0.02 d−1 and 76.80 ± 1.10 NL/(kg OM·d), respectively. After hydrothermal pre-treatment, the MP of BHT (253.60 ± 1.83 NL/kg OM) was 6.3% higher than BWT. However, the highest MP was found for BE, 268.20 ± 1.37 NL/kg OM; to compare, it increased by 12.1% and 5.5% with BWT and BHT, respectively. However, the kinetic parameters of MP were highest with BHT:kCH4 0.56 ± 0.02 d−1 vs. 0.32 ± 0.02 d−1 (BWT) and 0.34 ± 0.02 d−1 (BE); rCH4 141.80 ± 0.02 NL/(kg OM·d) (BHT) vs. 76.80 ± 1.10 NL/(kg OM·d) (BWT) and 89.80 ± 0.50 NL/(kg OM·d) (BE). The effectiveness of OM removal was highest with BE, similarly to the MP with the use of an enzymatic additive. The kinetics of OM removal (rOM, kOM) were highest with BHT, similarly to the kinetics of MP (rCH4, kCH4). The highest effectiveness of OM and, consequently, its lowest final content obtained with BE means that the organics were used most efficiently, which, in turn, may result in obtaining a more stable digestive system.

Funder

Ministry of Education and Science, Poland

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3