Anaerobic Digestion as a Possible Method of Managing Waste from Mushroom Production with Sewage Sludge as Co-Substrate

Author:

Bernat Katarzyna1ORCID,Le Thi Cam Tu1ORCID,Kulikowska Dorota1,Thapa Ram1ORCID

Affiliation:

1. Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-709 Olsztyn, Poland

Abstract

The mushroom agroindustry generates a huge amount of waste from mushroom production (WMP). The composition of WMP is not standardized but differs mainly in terms of organic matter (OM) content and OM biodegradability. This makes WMP management, including anaerobic digestion (AD), a significant challenge. A potential solution could be co-digestion of WMP with municipal sewage sludge (SS), especially SS generated in small rural wastewater treatment plants (WWTPs). Therefore, this study investigated mesophilic methane production (MP) from WMP, SS, and mixtures of SS and WMP at ratios of 70:30, 50:50, and 30:70 (w/w OM). Even though the maximum cumulative MP from WMP was relatively low (approx. 60 NL/kg OM), co-digesting WMP with SS increased both MP and the methane content of the biogas: with 30%, 50%, and 70% shares of SS, MP increased almost 2, 2.5, and 3.3 times, and the methane content increased to 61%, 62%, and 64%, respectively. As the SS content was increased, the kinetic coefficients of MP and OM removal decreased (from 0.211 to 0.146 d−1 and from 0.215 to 0.152 d−1), whereas the initial rate of MP and of OM removal increased (from 12.5 to 36.8 NL/(kg OM·d) and from 0.51 kg OM/(m3·d) to 0.59 kg OM/(m3·d), respectively). The effectiveness of OM removal (EOMrem) was lowest with WMP only, at 46.6%. When the SS content of the mixtures was increased to 30%, 50%, and 70%, EOMrem also increased to 55.3%, 60.1%, and 64.9%, respectively. The relationship between maximal MP and the overall OM removed was such that both increased simultaneously. The higher values of EOMrem and, consequently, the lower final contents of OM with more effective MP indicate that the organics were degraded more efficiently. These results suggest that co-digestion may be a profitable solution for simultaneously utilizing both of these waste products, increasing the efficiency of biogas production to such an extent that it would be profitable to conduct AD on mushroom farms. This is a flexible approach that allows varying proportions of WMP and SS to be used, depending on the availability of both substrates and the energy needs of the mushroom farm. However, it should be borne in mind that a higher share of WMP results in lower gas productivity.

Funder

Ministry of Education and Science, Poland

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3