Enhanced Liquid Fuel Production from Pyrolysis of Plastic Waste Mixtures Using a Natural Mineral Catalyst

Author:

Abnisa Faisal1ORCID

Affiliation:

1. Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia

Abstract

Since plastic wastes are commonly found and accumulate in numerous types and forms, the pyrolysis of plastic waste mixtures seems more feasible to be selected for large-scale production. However, the process typically produces less liquid than individual plastic pyrolysis. This study proposed a viable approach for catalytic pyrolysis by using natural mineral catalysts without modification. Bentonite was selected as a natural mineral catalyst while HZSM-5 was used for performance comparison. The process was evaluated in situ using a fixed-bed reactor at temperatures between 400 °C and 500 °C. The mixture of plastic waste composition was designed based on the non-recycled plastics data. The results showed that 42.55 wt% of liquid yield was obtained from thermal pyrolysis using Malaysia’s non-recycled plastics data. It was then found that using HZSM-5 and bentonite catalysts significantly boosted liquid products to about 56 and 60%, respectively. The presence of catalysts also positively minimized tar formation and eliminated wax formation in the liquid product. Furthermore, the catalytic process showed remarkable improvements in aromatics and alkane compounds in the liquid while only alkenes were found to be high when bentonite was used.

Funder

Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3