Cross-Category Tea Polyphenols Evaluation Model Based on Feature Fusion of Electronic Nose and Hyperspectral Imagery

Author:

Yang Baohua,Qi Lin,Wang MengxuanORCID,Hussain Saddam,Wang Huabin,Wang Bing,Ning Jingming

Abstract

Tea polyphenols are important ingredients for evaluating tea quality. The rapid development of sensors provides an efficient method for nondestructive detection of tea polyphenols. Previous studies have shown that features obtained from single or multiple sensors yield better results in detecting interior tea quality. However, due to their lack of external features, it is difficult to meet the general evaluation model for the quality of the interior and exterior of tea. In addition, some features do not fully reflect the sensor signals of tea for several categories. Therefore, a feature fusion method based on time and frequency domains from electronic nose (E-nose) and hyperspectral imagery (HSI) is proposed to estimate the polyphenol content of tea for cross-category evaluation. The random forest and the gradient boosting decision tree (GBDT) are used to evaluate the feature importance to obtain the optimized features. Three models based on different features for cross-category tea (black tea, green tea, and yellow tea) were compared, including grid support vector regression (Grid-SVR), random forest (RF), and extreme gradient boosting (XGBoost). The results show that the accuracy of fusion features based on the time and frequency domain from the electronic nose and hyperspectral image system is higher than that of the features from single sensor. Whether based on all original features or optimized features, the performance of XGBoost is the best among the three regression algorithms (R2 = 0.998, RMSE = 0.434). Results indicate that the proposed method in this study can improve the estimation accuracy of tea polyphenol content for cross-category evaluation, which provides a technical basis for predicting other components of tea.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3