Abstract
Agricultural intensification in sub-Saharan African countries has significantly increased pesticide applications. Information on pesticide residues and their transport in groundwater and streams is needed to properly manage and reduce any harm to the ecosystem and environment. This information is lacking in the volcanic soils of Ethiopian highlands. Therefore, this study was conducted to assess pesticide concentrations in ground and surface water and their risk to humans and aquatic life. The 9 km2 rural watershed Robit Bata in the Lake Tana Basin was selected. Crops were grown under rainfed and irrigated conditions. Pesticide use was assessed, and groundwater samples were collected from eight wells and surface water samples at the outlet twice in the rain phase and once in the dry phase. Samples were analyzed for chlorpyrifos, dimethoate, (α and β) endosulfan, profenofos, NO3−, and pH. Chlorpyrifos and endosulfan, which are strongly adsorbed and slowly degrading pesticides, were found in nearly all surface and groundwater samples, with maximum concentrations in surface water of 8 µg L−1 for chlorpyrifos and 3 µg L−1 endosulfan. Maximum groundwater concentrations were only slightly lower. The weakly adsorbed and fast degrading pesticides, dimethoate, and profenofos were detected only in the rain phase after spraying in the groundwater, indicating preferential transport to groundwater at depths of up to 9 m. The average concentration was 0.38 μg L−1 for dimethoate in surface waters and 1.24 μg L−1 in groundwater. Profenofos was not detected in surface water. In the groundwater, the average concentration was 0.05 μg L−1. Surface water concentrations of chlorpyrifos and endosulfan were highly toxic to fish. The World Health Organization banned these pesticides worldwide. It should be phased out for use in Ethiopia to safeguard the ecological health of Lake Tana, which is rich in biodiversity and endemic fish species.
Funder
the U.S. Agency for International Development under the Feed the Future Evaluation of the Relationship between Sustainably Intensified Production Systems and Farm Family Nutrition (SIPS-IN) project
Feed the Future Innovation Lab for Small Scale Irrigation
the Queen Elizabeth Scholarship
Cornell University
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献