Appraisal of Surface Water Quality of Nile River Using Water Quality Indices, Spectral Signature and Multivariate Modeling

Author:

Gad MohamedORCID,Saleh Ali H.ORCID,Hussein HendORCID,Farouk MohamedORCID,Elsayed SalahORCID

Abstract

Surface water quality management is an important facet of the effort to meet increasing demand for water. For that purpose, water quality must be monitored and assessed via the use of innovative techniques, such as water quality indices (WQIs), spectral reflectance indices (SRIs), and multivariate modeling. Throughout the Rosetta and Damietta branches of the Nile River, water samples were collected, and WQIs were assessed at 51 different distinct locations. The drinking water quality index (DWQI), metal index (MI), pollution index (PI), turbidity (Turb.) and total suspended solids (TSS) were assessed to estimate water quality status. Twenty-three physicochemical parameters were examined using standard analytical procedures. The average values of ions and metals exhibited the following sequences: Ca2+ > Na2+ > Mg2+ > K+, HCO32− > Cl− > SO42− > NO3− > CO3− and Al > Fe > Mn > Ba > Ni > Zn > Mo > Cr > Cr, respectively. Furthermore, under the stress of evaporation and the reverse ion exchange process, the main hydrochemical facies were Ca-HCO3 and mixed Ca-Mg-Cl-SO4. The DWQI values of the two Nile branches revealed that 53% of samples varied from excellent to good water, 43% of samples varied from poor to very poor water, and 4% of samples were unsuitable for drinking. In addition, the results showed that the new SRIs extracted from VIS and NIR region exhibited strong relationships with DWQI and MI and moderate to strong relationships with Turb. and TSS for each branch of the Nile River and their combination. The values of the R2 relationships between the new SRIs and WQIs varied from 0.65 to 0.82, 0.64 to 0.83, 0.41 to 0.60 and 0.35 to 0.79 for DWQI, MI, Turb. and TSS, respectively. The PLSR model produced a more accurate assessment of DWQI and MI based on values of R2 and slope than other indices. Furthermore, the partial least squares regression model (PLSR) generated accurate predictions for DWQI and MI of the Rosetta branch in the Val. datasets with an R2 of 0.82 and 0.79, respectively, and for DWQI and MI of the Damietta branch with an R2 of 0.93 and 0.78, respectively. Therefore, the combination of WQIs, SRIs, PLSR and GIS approaches are effective and give us a clear picture for assessing the suitability of surface water for drinking and its controlling factors.

Funder

University of Sadat City

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference103 articles.

1. Fresh Surface Water: Biology and Biodiversity of River Systems;Higler,2012

2. Water quality modeling and prediction;Loucks,2017

3. A critical review on water quality index tool: Genesis, evolution and future directions

4. Inorganic Pollutants in Water;Devi,2020

5. Removal of Tetracycline from Wastewater Using Circulating Fluidized Bed

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3