Experimental Study of Injection Parameters on the Performance of a Diesel Engine with Fischer–Tropsch Fuel Synthesized from Coal

Author:

Shi Jinhong,Wang Tie,Zhao Zhen,Yang Tiantian,Zhang Zhengwu

Abstract

Experimental research was conducted on a turbo-charged, inter-cooling and common-rail diesel engine with Fischer–Tropsch fuel synthesized from Coal-to-liquid (CTL), in order to investigate the influence of different injection parameters on the combustion, emissions and efficiency characteristics of the engine. The results showed that the ignition point was advanced, the in-cylinder pressure and heat release rate increased as the injection timing advanced and the injection pressure increased. By comparing the peak in-cylinder pressure of 100 cycles for one sample, it was found that the coefficient variation (COV) remained under 2% throughout the tests and the combustion process remained stable. NOx emissions decreased with delayed injection timing and lower injection pressure. In contrast to NOXNOx emissions, soot emissions were almost zero when the injection pressure was up to 143.5 MPa. The indicated thermal efficiency (ITE) showed no obvious change with different injection parameters, and remained under 40% in all the tests.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3