An Improved Equilibrium Optimizer with Application in Unmanned Aerial Vehicle Path Planning

Author:

Tang An-Di,Han Tong,Zhou HuanORCID,Xie Lei

Abstract

The unmanned aerial vehicle (UAV) path planning problem is a type of complex multi-constraint optimization problem that requires a reasonable mathematical model and an efficient path planning algorithm. In this paper, the fitness function including fuel consumption cost, altitude cost, and threat cost is established. There are also four set constraints including maximum flight distance, minimum flight altitude, maximum turn angle, and maximum climb angle. The constrained optimization problem is transformed into an unconstrained optimization problem by using the penalty function introduced. To solve the model, a multiple population hybrid equilibrium optimizer (MHEO) is proposed. Firstly, the population is divided into three subpopulations based on fitness and different strategies are executed separately. Secondly, a Gaussian distribution estimation strategy is introduced to enhance the performance of MHEO by using the dominant information of the populations to guide the population evolution. The equilibrium pool is adjusted to enhance population diversity. Furthermore, the Lévy flight strategy and the inferior solution shift strategy are used to help the algorithm get rid of stagnation. The CEC2017 test suite was used to evaluate the performance of MHEO, and the results show that MHEO has a faster convergence speed and better convergence accuracy compared to the comparison algorithms. The path planning simulation experiments show that MHEO can steadily and efficiently plan flight paths that satisfy the constraints, proving the superiority of the MHEO algorithm while verifying the feasibility of the path planning model.

Funder

The Science Foundation of the Shanxi Province, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3