An Improved Football Team Training Algorithm for Global Optimization

Author:

Hou Jun12ORCID,Cui Yuemei1,Rong Ming12,Jin Bo3ORCID

Affiliation:

1. Faculty of Sports Science, Ningbo University, Ningbo 315211, China

2. Research Academy of Grand Health, Ningbo University, Ningbo 315211, China

3. Institute of Systems and Robotics (ISR), Department of Electrical and Computer Engineering (DEEC), University of Coimbra, 3030-290 Coimbra, Portugal

Abstract

The football team training algorithm (FTTA) is a new metaheuristic algorithm that was proposed in 2024. The FTTA has better performance but faces challenges such as poor convergence accuracy and ease of falling into local optimality due to limitations such as referring too much to the optimal individual for updating and insufficient perturbation of the optimal agent. To address these concerns, this paper presents an improved football team training algorithm called IFTTA. To enhance the exploration ability in the collective training phase, this paper proposes the fitness distance-balanced collective training strategy. This enables the players to train more rationally in the collective training phase and balances the exploration and exploitation capabilities of the algorithm. To further perturb the optimal agent in FTTA, a non-monopoly extra training strategy is designed to enhance the ability to get rid of the local optimum. In addition, a population restart strategy is then designed to boost the convergence accuracy and population diversity of the algorithm. In this paper, we validate the performance of IFTTA and FTTA as well as six comparison algorithms in CEC2017 test suites. The experimental results show that IFTTA has strong optimization performance. Moreover, several engineering-constrained optimization problems confirm the potential of IFTTA to solve real-world optimization problems.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3