Integrated Methylome and Transcriptome Analysis between the CMS-D2 Line ZBA and Its Maintainer Line ZB in Upland Cotton

Author:

Zhang MengORCID,Guo Liping,Qi Tingxiang,Zhang Xuexian,Tang Huini,Wang Hailin,Qiao Xiuqin,Zhang Bingbing,Feng Juanjuan,Zuo Zhidan,Li Ting,Shahzad Kashif,Wu JianyongORCID,Xing Chaozhu

Abstract

DNA methylation is an important epigenetic modification involved in multiple biological processes. Altered methylation patterns have been reported to be associated with male sterility in some plants, but their role in cotton cytoplasmic male sterility (CMS) remains unclear. Here, integrated methylome and transcriptome analyses were conducted between the CMS-D2 line ZBA and its near-isogenic maintainer line ZB in upland cotton. More methylated cytosine sites (mCs) and higher methylation levels (MLs) were found among the three sequence contexts in ZB compared to ZBA. A total of 4568 differentially methylated regions (DMRs) and 2096 differentially methylated genes (DMGs) were identified. Among the differentially expressed genes (DEGs) associated with DMRs (DMEGs), 396 genes were upregulated and 281 genes were downregulated. A bioinformatics analysis of these DMEGs showed that hyper-DEGs were significantly enriched in the “oxidative phosphorylation” pathway. Further qRT-PCR validation indicated that these hypermethylated genes (encoding the subunits of mitochondrial electron transport chain (ETC) complexes I and V) were all significantly upregulated in ZB. Our biochemical data revealed a higher extent of H2O2 production but a lower level of adenosine triphosphate (ATP) synthesis in CMS-D2 line ZBA. On the basis of the above results, we propose that disrupted DNA methylation in ZBA may disrupt the homeostasis of reactive oxygen species (ROS) production and ATP synthesis in mitochondria, triggering a burst of ROS that is transferred to the nucleus to initiate programmed cell death (PCD) prematurely, ultimately leading to microspore abortion. This study illustrates the important role of DNA methylation in cotton CMS.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3