Adaptability and Stability Comparisons of Inbred and Hybrid Cotton in Yield and Fiber Quality Traits

Author:

Shahzad KashifORCID,Qi Tingxiang,Guo Liping,Tang Huini,Zhang Xuexian,Wang Hailin,Qiao Xiuqin,Zhang MengORCID,Zhang Bingbing,Feng Juanjuan,Shahid Iqbal Muhammad,Wu JianyongORCID,Xing Chaozhu

Abstract

Cotton (Gossypium hirsutum L.) is the most important fiber crop worldwide. Characterizing genotype by environment interaction (GEI) is helpful to identify stable genotypes across diverse environments. This study was conducted in six environments to compare the performance and stability of 11 inbred lines and 30 intraspecific hybrids of cotton. Analysis of variance using the additive main effects and multiplicative interaction model revealed that genotype (G), environment (E), and GEI had highly significant effects on yield and fiber quality traits. Mean comparisons among genotypes showed that most hybrids had higher means for yield and fiber quality traits than inbred genotypes. Additionally, a larger portion of the total variability in yield traits was explained by E than G and GEI. However, G and GEI combined contributed more to the total variance in fiber traits than E. The first three interaction principal components explained the majority of GEI in all traits under study. For most traits, the environments were not clustered together, implying contrasting interaction with genotypes. Stability measurements indicated that most hybrids showed more stable performance than inbred lines for all traits. The hybrids SJ48-1 × Z98-15 and L28-2 × A2-10 displayed both better performance and stability in yield and fiber quality traits. Our results show the importance of hybridization for improving cotton yield and fiber quality in a wide range of environments.

Funder

National key Research and Development Program of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3