Assessment of Climatic and Anthropogenic Controls on Bridge Deck Drainage and Sediment Removal

Author:

Michalek Alexander,Husic AdminORCID,Roundy Joshua,Hansen Amy T.

Abstract

Bridge deck drainage is essential to prevent hydroplaning and maintain safety along major roadways. With projected changes in climate, current designs may not be sufficient and a better understanding of the primary controls (climate, bridge deck, and inlet design) on the hydraulic efficiency and sediment removal of drainage systems is needed to maintain public safety. To evaluate the controls on hydraulic drainage efficiency, 576 controlled laboratory experiments were conducted testing grate type (rectangular bar vs. curved vane) and downspout configuration (square vs. circular and 20 cm vs. 25 cm) across a range of flow rates, cross slopes, and longitudinal slopes. An additional 144 sediment erosion experiments were performed to identify controls on the removal of sediment. Hydraulic testing indicated that inflow driven by climate is a primary control on drainage efficiency and spread of water on a roadway. For anthropogenic controls, downspout opening size was found to be the primary control followed by longitudinal slope. Sediment removal results indicated that inflow regime and grate type were the primary controls on the sediment removal rate. Given that inflow, driven by climate, is a control on both hydraulic and sediment removal performance, hydraulic engineers should consider forecasted changes in rainfall intensity in their present-day drainage designs. We provide design guidance and discussion for developing a proactive approach to hydraulic infrastructure in the face of future climate uncertainty.

Funder

Kansas Department of Transportation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3