Impact of Slope Orientation on Inlet Spacing: Gutter Flow Analyses

Author:

Cavdar Sevgi,Uyumaz Ali

Abstract

A roadway’s capacity to drain itself is of utmost importance for the safety and comfort of its users. Standing water and any amount of channelized flow on roadways create nuisances to the users, and the extent of encroachment into the lanes and the water-film thickness over the lanes are crucial for motorists with relatively high speed. Guidelines cover a wide range of subjects from size and type of inlets, which capture the channelized flow for conveyance into enclosed drains, to the decision for slope orientation, but the guidelines seem to lack in checking the depth of channelized flow. HEC-22 (the urban drainage design manual of US Department of Transportation) endorses limiting the flow depths to curb height (as if the concern is no longer the roadway users) and fixes the criterion for the inlet spacing (restricted to 90 to 150 m) to maximum allowable flow spreads. This study analyzed the maximum allowable inlet spacing via setting three criteria: fixed maximums to flow depth, spread for the channel flow, and to over-lane water-film thickness. The impact of slope orientation on inlet spacing is tested along with some other factors for roadways of two types (local and highway). The results were graphed for various uniform slope orientations under a wide range of rainfall intensities for the determined inlet spacing values. This was performed by combining a kinematic wave equation solution to dismiss the conditions that lead to hydroplaning depths when using the Rational Method and Manning’s equation to obtain water depths and inlet spacings for an inlet of full capture capacity. It is found that the allowable spacing values do not constitute any major restrictions in highway setting (3 m shoulder) in terms of recommended spacing. In the local setting, however, with a maximum spread of 1.8 m, maximum allowable inlet spacing becomes a limitation in many orientations, and slope optimization under such conditions becomes crucial at times when providing the same spacing for two orientations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference43 articles.

1. AASHTO (2018). A Policy on Geometric Design of Highways and Streets, American Association of State Highway and Transport Officials. [7th ed.].

2. Further Improvement in a Criterion for Human Stability in Floodwaters;J. Flood Risk Manag.,2019

3. Experimental Study of the Stability of Pedestrians Exposed to Urban Pluvial Flooding;Nat. Hazards,2016

4. Using Web-based Observations to Identify Thresholds of a Person’s Stability in a Flow;Water Resour. Res.,2016

5. Review and Analysis of Vehicle Stability Models during Floods and Proposal for Future Improvements;J. Flood Risk Manag.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3