Forest Understorey Vegetation: Colonization and the Availability and Heterogeneity of Resources

Author:

Su XiangpingORCID,Wang MinhuangORCID,Huang Zhiqun,Fu Songling,Chen Han Y.H.ORCID

Abstract

Understorey vegetation comprises a major portion of plant diversity and contributes greatly to nutrient cycling and energy flow. This review examines the mechanisms involved in the response of understorey vegetation to stand development and the overstorey canopy following disturbances. The overall abundance and diversity of the understorey is enhanced with the availability and heterogeneity of light, soil nutrients, soil moisture, and substrates. Vascular plants are positively impacted by the availability and heterogeneity of light and soil nutrients, whereas non-vascular vegetation is more strongly influenced by colonization time, soil moisture, and substrates, and is decreased with a higher proportion of broadleaf overstorey. The availability of resources is a prominent driver toward the abundance and diversity of understorey vegetation, from the stand initiation to stem exclusion stage under a single-species dominated overstorey. However, resource heterogeneity dominates at the later stages of succession under a mixed overstorey. Climate and site conditions modify resource availability and heterogeneity in the understorey layer, but the extent of their influences requires more investigation. Forest management practices (clearcutting and partial harvesting) tend to increase light availability and heterogeneity, which facilitates the abundance and diversity of understorey vascular plants; however, these factors reduce the occurrence of non-vascular plants. Nevertheless, in the landscape context, anthropogenic disturbances homogenize environmental conditions and reduce beta-diversity, as well, the long-term effects of anthropogenic disturbances on understorey vegetation remain unclear, particularly compared with those in primary forests.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3