Acacia Density, Edaphic, and Climatic Factors Shape Plant Assemblages in Regrowth Montane Forests in Southeastern Australia

Author:

Singh Anu1,Kasel Sabine1ORCID,Hui Francis K. C.2ORCID,Trouvé Raphaël1,Baker Patrick J.1,Nitschke Craig R.1ORCID

Affiliation:

1. School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, 500 Yarra Boulevard, Burnley, VIC 3121, Australia

2. Research School of Finance, Actuarial Studies & Statistics, Australian National University, Acton, ACT 2601, Australia

Abstract

A fundamental requirement of sustainable forest management is that stands are adequately regenerated after harvesting. To date, most research has focused on the regeneration of the dominant timber species and to a lesser degree on plant communities. Few studies have explored the impact of the regeneration success of dominant tree species on plant community composition and diversity. In this study, we quantified the influence of variability in tree density and climatic and edaphic factors on plant species diversity in montane regrowth forests dominated by Eucalyptus regnans in the Central Highlands of Victoria in southeastern Australia. We found that Acacia density shaped plant biodiversity more than Eucalyptus density. Edaphic factors, particularly soil nutrition and moisture availability, played a significant role in shaping species turnover and occurrence. Our findings suggest that the density of Acacia is a key biotic filter that influences the occurrence of many understorey plant species and shapes plant community turnover. This should be considered when assessing the impacts of both natural and anthropogenic disturbances on plant biodiversity in the montane forests of southeastern Australia.

Funder

Australian Research Council

Melbourne Research Scholarship

Publisher

MDPI AG

Subject

Forestry

Reference98 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3