Analysis of Machine Learning Algorithms for Anomaly Detection on Edge Devices

Author:

Huč Aleks,Šalej Jakob,Trebar Mira

Abstract

The Internet of Things (IoT) consists of small devices or a network of sensors, which permanently generate huge amounts of data. Usually, they have limited resources, either computing power or memory, which means that raw data are transferred to central systems or the cloud for analysis. Lately, the idea of moving intelligence to the IoT is becoming feasible, with machine learning (ML) moved to edge devices. The aim of this study is to provide an experimental analysis of processing a large imbalanced dataset (DS2OS), split into a training dataset (80%) and a test dataset (20%). The training dataset was reduced by randomly selecting a smaller number of samples to create new datasets Di (i = 1, 2, 5, 10, 15, 20, 40, 60, 80%). Afterwards, they were used with several machine learning algorithms to identify the size at which the performance metrics show saturation and classification results stop improving with an F1 score equal to 0.95 or higher, which happened at 20% of the training dataset. Further on, two solutions for the reduction of the number of samples to provide a balanced dataset are given. In the first, datasets DRi consist of all anomalous samples in seven classes and a reduced majority class (‘NL’) with i = 0.1, 0.2, 0.5, 1, 2, 5, 10, 15, 20 percent of randomly selected samples. In the second, datasets DCi are generated from the representative samples determined with clustering from the training dataset. All three dataset reduction methods showed comparable performance results. Further evaluation of training times and memory usage on Raspberry Pi 4 shows a possibility to run ML algorithms with limited sized datasets on edge devices.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3