Bidirectional Feature Fusion and Enhanced Alignment Based Multimodal Semantic Segmentation for Remote Sensing Images

Author:

Liu Qianqian1ORCID,Wang Xili1ORCID

Affiliation:

1. School of Computer Science, Shaanxi Normal University, Xi’an 710119, China

Abstract

Image–text multimodal deep semantic segmentation leverages the fusion and alignment of image and text information and provides more prior knowledge for segmentation tasks. It is worth exploring image–text multimodal semantic segmentation for remote sensing images. In this paper, we propose a bidirectional feature fusion and enhanced alignment-based multimodal semantic segmentation model (BEMSeg) for remote sensing images. Specifically, BEMSeg first extracts image and text features by image and text encoders, respectively, and then the features are provided for fusion and alignment to obtain complementary multimodal feature representation. Secondly, a bidirectional feature fusion module is proposed, which employs self-attention and cross-attention to adaptively fuse image and text features of different modalities, thus reducing the differences between multimodal features. For multimodal feature alignment, the similarity between the image pixel features and text features is computed to obtain a pixel–text score map. Thirdly, we propose a category-based pixel-level contrastive learning on the score map to reduce the differences among the same category’s pixels and increase the differences among the different categories’ pixels, thereby enhancing the alignment effect. Additionally, a positive and negative sample selection strategy based on different images is explored during contrastive learning. Averaging pixel values across different training images for each category to set positive and negative samples compares global pixel information while also limiting sample quantity and reducing computational costs. Finally, the fused image features and aligned pixel–text score map are concatenated and fed into the decoder to predict the segmentation results. Experimental results on the ISPRS Potsdam, Vaihingen, and LoveDA datasets demonstrate that BEMSeg is superior to comparison methods on the Potsdam and Vaihingen datasets, with improvements in mIoU ranging from 0.57% to 5.59% and 0.48% to 6.15%, and compared with Transformer-based methods, BEMSeg also performs competitively on LoveDA dataset with improvements in mIoU ranging from 0.37% to 7.14%.

Funder

Second Tibetan Plateau Scientific Expedition and Research

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3