Automatic Detection of Coseismic Landslides Using a New Transformer Method

Author:

Tang XiaochuanORCID,Tu Zihan,Wang Yu,Liu MingzheORCID,Li Dongfen,Fan Xuanmei

Abstract

Earthquake-triggered landslides frequently occur in active mountain areas, which poses great threats to the safety of human lives and public infrastructures. Fast and accurate mapping of coseismic landslides is important for earthquake disaster emergency rescue and landslide risk analysis. Machine learning methods provide automatic solutions for landslide detection, which are more efficient than manual landslide mapping. Deep learning technologies are attracting increasing interest in automatic landslide detection. CNN is one of the most widely used deep learning frameworks for landslide detection. However, in practice, the performance of the existing CNN-based landslide detection models is still far from practical application. Recently, Transformer has achieved better performance in many computer vision tasks, which provides a great opportunity for improving the accuracy of landslide detection. To fill this gap, we explore whether Transformer can outperform CNNs in the landslide detection task. Specifically, we build a new dataset for identifying coseismic landslides. The Transformer-based semantic segmentation model SegFormer is employed to identify coseismic landslides. SegFormer leverages Transformer to obtain a large receptive field, which is much larger than CNN. SegFormer introduces overlapped patch embedding to capture the interaction of adjacent image patches. SegFormer also introduces a simple MLP decoder and sequence reduction to improve its efficiency. The semantic segmentation results of SegFormer are further improved by leveraging image processing operations to distinguish different landslide instances and remove invalid holes. Extensive experiments have been conducted to compare Transformer-based model SegFormer with other popular CNN-based models, including HRNet, DeepLabV3, Attention-UNet, U2Net and FastSCNN. SegFormer improves the accuracy, mIoU, IoU and F1 score of landslide detectuin by 2.2%, 5% and 3%, respectively. SegFormer also reduces the pixel-wise classification error rate by 14%. Both quantitative evaluation and visualization results show that Transformer is capable of outperforming CNNs in landslide detection.

Funder

China Postdoctoral Science Foundation

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3