Navigating an Automated Driving Vehicle via the Early Fusion of Multi-Modality

Author:

Haris MalikORCID,Glowacz AdamORCID

Abstract

The ability of artificial intelligence to drive toward an intended destination is a key component of an autonomous vehicle. Different paradigms are now being employed to address artificial intelligence advancement. On the one hand, modular pipelines break down the driving model into submodels, such as perception, maneuver planning and control. On the other hand, we used the end-to-end driving method to assign raw sensor data directly to vehicle control signals. The latter is less well-studied but is becoming more popular since it is easier to use. This article focuses on end-to-end autonomous driving, using RGB pictures as the primary sensor input data. The autonomous vehicle is equipped with a camera and active sensors, such as LiDAR and Radar, for safe navigation. Active sensors (e.g., LiDAR) provide more accurate depth information than passive sensors. As a result, this paper examines whether combining the RGB from the camera and active depth information from LiDAR has better results in end-to-end artificial driving than using only a single modality. This paper focuses on the early fusion of multi-modality and demonstrates how it outperforms a single modality using the CARLA simulator.

Funder

This research was funded by the AGH University of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring Contextual Representation and Multi-modality for End-to-end Autonomous Driving;Engineering Applications of Artificial Intelligence;2024-09

2. Are you a robot? Detecting Autonomous Vehicles from Behavior Analysis;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

3. CourtNet: Dynamically balance the precision and recall rates in infrared small target detection;Expert Systems with Applications;2023-12

4. PA3DNet: 3-D Vehicle Detection With Pseudo Shape Segmentation and Adaptive Camera-LiDAR Fusion;IEEE Transactions on Industrial Informatics;2023-11

5. Multimodal fusion for sensorimotor control in steering angle prediction;Engineering Applications of Artificial Intelligence;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3