Optimum Vehicle Suspensions Minimizing RMS Rattlespace, Sprung-Mass Acceleration and Jerk

Author:

Hrovat D.1,Hubbard M.2

Affiliation:

1. Scientific Research Laboratory, Ford Motor Company, Dearborn, Mich. 48121

2. Department of Mechanical Engineering, University of California, Davis, Calif. 95616

Abstract

The optimal suspension structure for a simple one-degree-of-freedom vehicle model is derived using Linear-Quadratic regulator theory. In addition to rms rattlespace and acceleration, rms jerk is included in the performance index. The suspension structure contains a skyhook spring as well as the more well known skyhook damper to inertial ground and must be mechanized actively except for the shock isolation problem with no ground motion. When jerk weighting is predominant, the damping ratio ζ of the complex roots shifts from 0.707 to 0.5. Charts are presented which enable preliminary design calculations to be done graphically. Using frequency response and time response techniques, performance is compared to that of optimal suspensions disregarding jerk.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3