Spatial and Temporal Evolution and Driving Mechanisms of Water Conservation Amount of Major Ecosystems in Typical Watersheds in Subtropical China

Author:

Li Yiting,Kong MingORCID,Zang ChuanfuORCID,Deng Jinglin

Abstract

The water conservation function of ecosystems is a research hot spot in the field of water resources, and it is also an important ecological service function of terrestrial ecosystems and a key point in eco-hydrology research. With the increasing frequency of human activities and climate change, how to reveal the response of ecosystem water conservation function to the changing environment is a scientific problem that needs to be urgently addressed in ecological hydrology research. To reveal the eco-hydrological processes under the changing environment, this study was based on the distributed hydrological model (SWAT) and used water conservation amount (WCA) as an indicator to assess the water conservation capacity of ecosystems. Scenario analysis and statistical analysis were also used to determine the spatial and temporal evolution of the WCAs of farmland, forest, and grassland ecosystems under a changing environment and to further investigate the influence mechanisms of land use change and climate change on the WCA. The findings show that (1) the climate conditions in the Hanjiang watershed have determined the distribution pattern of the ecosystem’s WCA. The spatial distribution patterns of the WCA of each ecosystem differed significantly between the dry season and the wet season. Under the combined influence of human activities and climate change, there was no significant change in the spatial distribution pattern of the WCA. (2) Climate change patterns, which were dominated by precipitation and influenced by evapotranspiration, determined the changes in the WCA of ecosystems. In addition, there were significant spatial differences in the response of the watershed WCA under changing environments in the dry season. Differences in land use type and local climate change were the main reasons for such differences. (3) There were differences in the WCA and the response to changing environments among ecosystems. Forest ecosystems had the highest WCA; grassland ecosystems were the most sensitive to land use change. This study can provide a theoretical basis for alleviating the increasingly serious water resource problems in the basin and ensuring water and ecological security in the basin.

Funder

FORESTRY ECOLOGICAL MONITORING NETWORK PLATFORM CONSTRUCTION

GUANGDONG NATURAL SCIENCE FOUNDATION

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3