A Passive Source Location Method in a Shallow Water Waveguide with a Single Sensor Based on Bayesian Theory

Author:

Li Xiaoman,Piao Shengchun,Zhang Minghui,Liu Yan

Abstract

Bayesian methodology is a good way to infer unknown parameters in a marine environment. A passive source location method in a shallow water waveguide with a single sensor based on Bayesian theory is presented in this paper. The input of a Bayesian inversion algorithm is received different normal mode impulse signals, which are separated and extracted with a warping transformation from received broadband impulse signals. The source range, depth, and other seabed parameters were estimated without prior knowledge of the seabed information. Different normal mode impulse acoustic signals travelling at different group speeds arrived at the sensor at different times because of the dispersion characteristics of the shallow water waveguide. The time delay of different modes can be used for the passive source location. However, normal mode group speeds are greatly affected by the environmental parameters. The performance of the passive location becomes negative when parameters mismatch. In this paper, the source location was transformed to the inversion of the source location and environmental parameters, which can be estimated accurately based on the multi-dimensional posterior probability density (PPD). This method is less limited by environmental factors, and the accuracy of inversion results can be analyzed according to the PPD of inversion parameters, which has higher reliability and a wider application scope. The effectiveness and robustness of the algorithm were quantified in terms of the root mean squared error (RMSE) at a variety of signal-to-noise ratios (SNRs) in 50 simulation sets. The RMSE values decreased with the SNR. The validity and accuracy of the method were proved by the results of simulation and experiment data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3