Classification of Tetanus Severity in Intensive-Care Settings for Low-Income Countries Using Wearable Sensing

Author:

Lu PingORCID,Ghiasi ShadiORCID,Hagenah Jannis,Hai Ho Bich,Hao Nguyen Van,Khanh Phan Nguyen QuocORCID,Khoa Le Dinh Van,Thwaites Louise,Clifton David A.,Zhu TingtingORCID,

Abstract

Infectious diseases remain a common problem in low- and middle-income countries, including in Vietnam. Tetanus is a severe infectious disease characterized by muscle spasms and complicated by autonomic nervous system dysfunction in severe cases. Patients require careful monitoring using electrocardiograms (ECGs) to detect deterioration and the onset of autonomic nervous system dysfunction as early as possible. Machine learning analysis of ECG has been shown of extra value in predicting tetanus severity, however any additional ECG signal analysis places a high demand on time-limited hospital staff and requires specialist equipment. Therefore, we present a novel approach to tetanus monitoring from low-cost wearable sensors combined with a deep-learning-based automatic severity detection. This approach can automatically triage tetanus patients and reduce the burden on hospital staff. In this study, we propose a two-dimensional (2D) convolutional neural network with a channel-wise attention mechanism for the binary classification of ECG signals. According to the Ablett classification of tetanus severity, we define grades 1 and 2 as mild tetanus and grades 3 and 4 as severe tetanus. The one-dimensional ECG time series signals are transformed into 2D spectrograms. The 2D attention-based network is designed to extract the features from the input spectrograms. Experiments demonstrate a promising performance for the proposed method in tetanus classification with an F1 score of 0.79 ± 0.03, precision of 0.78 ± 0.08, recall of 0.82 ± 0.05, specificity of 0.85 ± 0.08, accuracy of 0.84 ± 0.04 and AUC of 0.84 ± 0.03.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3