Microbial Production and Enzymatic Biosynthesis of γ-Aminobutyric Acid (GABA) Using Lactobacillus plantarum FNCC 260 Isolated from Indonesian Fermented Foods

Author:

Yogeswara Ida Bagus Agung,Kittibunchakul Suwapat,Rahayu Endang Sutriswati,Domig Konrad J.ORCID,Haltrich DietmarORCID,Nguyen Thu HaORCID

Abstract

In the present study, we isolated and screened thirty strains of GABA (γ-aminobutyric acid)-producing lactic acid bacteria (LAB) from traditional Indonesian fermented foods. Two strains were able to convert monosodium glutamate (MSG) to GABA after 24 h of cultivation at 37 °C based on thin layer chromatography (TLC) screening. Proteomic identification and 16S rDNA sequencing using MALDI-TOF MS identified the strain as Lactobacillus plantarum designated as L. plantarum FNCC 260 and FNCC 343. The highest yield of GABA production obtained from the fermentation of L. plantarum FNCC 260 was 809.2 mg/L of culture medium after 60 h of cultivation. The supplementation of 0.6 mM pyridoxal 5’-phosphate (PLP) and 0.1 mM pyridoxine led to the increase in GABA production to 945.3 mg/L and 969.5 mg/L, respectively. The highest GABA production of 1226.5 mg/L of the culture medium was obtained with 100 mM initial concentration of MSG added in the cultivation medium. The open reading frame (ORF) of 1410 bp of the gadB gene from L. plantarum FNCC 260 encodes 469 amino acids with a calculated molecular mass of 53.57 kDa. The production of GABA via enzymatic conversion of monosodium glutamate (MSG) using purified recombinant glutamate decarboxylase (GAD) from L. plantarum FNCC 260 expressed in Escherichia coli was found to be more efficient (5-fold higher within 6 h) than the production obtained from fermentation. L. plantarum FNCC 260 could be of interest for the synthesis of GABA.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3