Surface Analysis of TMCTS-Based SiOC(H) Low-k Dielectrics in Post-Etch Strip of ACL Hardmask

Author:

Park Min Kyu,Song Wan Soo,Kim Min Ho,Hong Sang JeenORCID

Abstract

The miniaturization of devices requires the introduction of a high aspect ratio through patterning in the Damascene copper interconnect process. The high aspect ratio etch process employs hardmasks, such as amorphous carbon, that can withstand high-powered plasma exposure. When an etch hardmask is removed after patterning, the properties of the underlying film can be altered by the effect of plasma exposure during the strip process. In this study, surface properties of SiOC(H) are investigated after an amorphous carbon strip with O2/Ar plasma. Since the low-k film of SiOC(H) structure shows characteristics according to the Si-O internal bonding structure, the Si-O bonding ratio of the ring, network and cage structure was analyzed through Fourier-transform infrared (FT-IR) analysis to measure changes in thin film properties. X-ray photoelectron spectroscopy (XPS) was also used to add reliability to the SiOC(H) film structure. In addition, the end point of the strip process was obtained using an optical emission spectroscopy sensor and variations in thin film characteristics over the plasma exposure time were analyzed. These results revealed the structural modification of the SiCO(H) thin film in the post-etch strip of the amorphous carbon layer (ACL) hardmask.

Funder

Korea Institute for Advancement of Technology

Korea Evaluation Institute of Industrial Technology

Publisher

MDPI AG

Subject

General Materials Science

Reference23 articles.

1. IEEE International Roadmap for Device and System 2018 Edition,2019

2. Porous Low-Dielectric-Constant Material for Semiconductor Microelectronics;Cheng,2018

3. Characterization of Plasma Deposited TMCTS Based Low-k Thin Film Deposition Process

4. Chemical Routes to Improved Mechanical Properties of PECVD Low K Thin Film;Bilodeau,2004

5. Review of methods for the mitigation of plasma‐induced damage to low‐dielectric‐constant interlayer dielectrics used for semiconductor logic device interconnects

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3