Procyanidin C1 Activates the Nrf2/HO-1 Signaling Pathway to Prevent Glutamate-Induced Apoptotic HT22 Cell Death

Author:

Song Ji HoonORCID,Lee Hae-JeungORCID,Kang Ki Sung

Abstract

Natural sources are very promising materials for the discovery of novel bioactive compounds with diverse pharmacological effects. In recent years, many researchers have focused on natural sources as a means to prevent neuronal cell death in neuropathological conditions. This study focused on identifying neuroprotective compounds and their underlying molecular mechanisms. Procyanidin C1 (PC-1) was isolated from grape seeds and assessed for biological effects against glutamate-induced HT22 cell death. The results showed that PC-1 strongly prevented glutamate-induced HT22 cell death. Moreover, PC-1 was also found to prevent glutamate-induced chromatin condensation and reduce the number of annexin V-positive cells indicating apoptotic cell death. Procyanidin C1 possessed a strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity and inhibited glutamate-induced accumulation of intracellular reactive oxygen species and protein carbonylation. Additionally, PC-1 mediated nuclear translocation of nuclear factor erythroid-derived 2-related factor 2 and increased the expression levels of heme oxygenase (HO-1). Inhibition of HO-1 by tin protoporphyrin, a synthetic inhibitor, reduced the protective effect of PC-1. Furthermore, PC-1 also blocked glutamate-induced phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK1/2 and p38, but not JNK. This study is the first experimental report to demonstrate the neuroprotective effects of PC-1 against glutamate-induced cytotoxicity in HT22 cells. Therefore, our results suggest that PC-1, as a potent bioactive compound of grape seeds, can prevent neuronal cell death in neuropathological conditions.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3