Improved Piecewise Linear Transformation for Precise Warping of Very-High-Resolution Remote Sensing Images

Author:

Han ,Kim ,Yeom

Abstract

A large number of evenly distributed conjugate points (CPs) in entirely overlapping regions of the images are required to achieve successful co-registration between very-high-resolution (VHR) remote sensing images. The CPs are then used to construct a non-linear transformation model that locally warps a sensed image to a reference image’s coordinates. Piecewise linear (PL) transformation is largely exploited for warping VHR images because of its superior performance as compared to the other methods. The PL transformation constructs triangular regions on a sensed image from the CPs by applying the Delaunay algorithm, after which the corresponding triangular regions in a reference image are constructed using the same CPs on the image. Each corresponding region in the sensed image is then locally warped to the regions of the reference image through an affine transformation estimated from the CPs on the triangle vertices. The warping performance of the PL transformation shows reliable results, particularly in regions inside the triangles, i.e., within the convex hulls. However, the regions outside the triangles, which are warped when the extrapolated boundary planes are extended using CPs located close to the regions, incur severe geometric distortion. In this study, we propose an effective approach that focuses on the improvement of the warping performance of the PL transformation over the external area of the triangles. Accordingly, the proposed improved piecewise linear (IPL) transformation uses additional pseudo-CPs intentionally extracted from positions on the boundary of the sensed image. The corresponding pseudo-CPs on the reference image are determined by estimating the affine transformation from CPs located close to the pseudo-CPs. The latter are simultaneously used with the former to construct the triangular regions, which are enlarged accordingly. Experiments on both simulated and real datasets, constructed from Worldview-3 and Kompsat-3A satellite images, were conducted to validate the effectiveness of the proposed IPL transformation. That transformation was shown to outperform the existing linear/non-linear transformation models such as an affine, third and fourth polynomials, local weighted mean, and PL. Moreover, we demonstrated that the IPL transformation improved the warping performance over the PL transformation outside the triangular regions by increasing the correlation coefficient values from 0.259 to 0.304, 0.603 to 0.657, and 0.180 to 0.338 in the first, second, and third real datasets, respectively.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3