Registration of Large Optical and SAR Images with Non-Flat Terrain by Investigating Reliable Sparse Correspondences

Author:

Zhang Han12,Lei Lin1,Ni Weiping2,Cheng Kenan2,Tang Tao1,Wang Peizhong2,Kuang Gangyao1

Affiliation:

1. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China

2. Northwest Institute of Nuclear Technology, Xi’an 710024, China

Abstract

Optical and SAR image registration is the primary procedure to exploit the complementary information from the two different image modal types. Although extensive research has been conducted to narrow down the vast radiometric and geometric gaps so as to extract homogeneous characters for feature point matching, few works have considered the registration issue for non-flat terrains, which will bring in more difficulties for not only sparse feature point matching but also outlier removal and geometric relationship estimation. This article addresses these issues with a novel and effective optical-SAR image registration framework. Firstly, sparse feature points are detected based on the phase congruency moment map of the textureless SAR image (SAR-PC-Moment), which helps to identify salient local regions. Then a template matching process using very large local image patches is conducted, which increases the matching accuracy by a significant margin. Secondly, a mutual verification-based initial outlier removal method is proposed, which takes advantage of the different mechanisms of sparse and dense matching and requires no geometric consistency assumption within the inliers. These two procedures will produce a putative correspondence feature point (CP) set with a low outlier ratio and high reliability. In the third step, the putative CPs are used to segment the large input image of non-flat terrain into dozens of locally flat areas using a recursive random sample consensus (RANSAC) method, with each locally flat area co-registered using an affine transformation. As for the mountainous areas with sharp elevation variations, anchor CPs are first identified, and then optical flow-based pixelwise dense matching is conducted. In the experimental section, ablation studies using four precisely co-registered optical-SAR image pairs of flat terrain quantitatively verify the effectiveness of the proposed SAR-PC-Moment-based feature point detector, big template matching strategy, and mutual verification-based outlier removal method. Registration results on four 1 m-resolution non-flat image pairs prove that the proposed framework is able to produce robust and quite accurate registration results.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3